III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

DESIGN OF REINFORCED CONCRETE STRUCTURES (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome Use of IS: 456-2000 and SP – 16 design charts are permitted.

		BL	СО	Max. Marks			
	UNIT-I						
1	a) Discuss merits and demerits of working	L2	CO1	7 M			
	stress method and limit state method.						
	b) Explain under reinforced and over	L2	CO1	7 M			
	reinforced design and mention which is						
	advisable for designs.						
OR							
2	A rectangular reinforced concrete beam has	L4	CO1	14 M			
	width of 200 mm and reinforced with 2 bars of						
	20 mm diameter at an effective depth of 400						
	mm. If M20 grade concrete and Fe415 grade						
	steel bars are used, determine the ultimate						
	moment of resistance of the section. Assume						
	suitable data if necessary.						
		1	•				

		UNIT-II						
3	rect mm of effe con flex	doubly reinforced concrete beam having a cangular section of 250 mm wide and 540 a overall depth is reinforced with 2 bars of 12 a diameter in the compression side and 4 bars 20 mm diameter in the tension side. The active cover is 40 mm. Using M20 grade crete and Fe 415 HYSD bars, estimate the cural strength of the section using IS:456-	L4	CO2	14 M			
	2000 code recommendations. OR							
4	the Cle Wid Ser Mat	sign a singly reinforced concrete beam to suit following data. ar span = 4 m dth of supports = 300 mm brick walls vice live load = 5 kN/m terials: M20 grade concrete and Fe415 SD bars.	L6	CO2	14 M			
		UNIT-III						
5	a) b)	Explain different types of shear failures. A simply supported beam 300 mm wide, 600 mm effective depth carries a UDL of 70 kN/m including self-weight over an effective span of 6 m. The reinforcement consists of 5 bars of 25 mm diameter out of these 2 bars are bent safely at 1 m distance from support. Design the shear reinforcement for the beam. Use M30 concrete and Fe415 steel.		CO3 CO3	7 M 7 M			

	OR			
6	Design torsional reinforcement in a rectangular	L6	CO3	14 M
	beam section 350 mm wide and 750 mm deep			
	subjected to an ultimate twisting moment of			
	140 kN-m combined with ultimate shear force of			
	110 kN. Assume M25 grade concrete, Fe415			
	grade steel and mild exposure conditions.			
	UNIT-IV			
7	Design a two-way slab for a residential building	L6	CO4	14 M
	floor of size 5.5 m x 4.5 m with discontinuous			
	and simply supported edges on all the sides with			
	corners prevented from lifting and supporting a			
	service load of 4 kN/m ² . Consider M20 grade			
	concrete and Fe415 steel.			
	OR			
8	A hall has clear dimensions of 3 m x 9 m with a	L6	CO4	14 M
	wall thickness of 230 mm. Live load on the slab			
	is 4 kN/m ² and floor finish is 2 kN/m ² . Design			
	the slab using M20 grade concrete and Fe415			
	steel. Sketch the reinforcement details.			
	UNIT-V			
9	Design a short axially loaded column 350 mm x	L6	CO5	14 M
	350 mm to support a service load of 1000 kN at			
	an eccentricity of 160 mm. Use M20 grade			
	concrete and Fe415 steel.			
	OR		·I	

10	Design an isolated footing for a circular column	L6	CO5	14 M
	560 mm in diameter transmitting an axial load of			
	1200 kN. The column is reinforced with spars of			
	12 mm dia. The safe bearing capacity of soil is			
	120 kN/m ² . Use M20 grade concrete and Fe415			
	steel.			